IR

%

UNITE DE RECHERCHE
NRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
~ Rocquencourt
BRP105.
esnay. Cedex

Rapports de Recherche

N° 842

THE ESTEREL SYNCHRONOUS
PROGRAMMING LANGUAGE :
DESIGN, SEMANTICS,
IMPLEMENTATION

Gérard BERRY
Georges GONTHIER

MAI 1988

| g

R T

L AR TPV

3G

SRETIF A o Y e

N R TN S e S el e Nk ol N,

The ESTEREL Synchronous Programming Language :

Design, Semantics, Implementation

Le Langage Synchrone ESTEREL :

Conception, Sémantique, Implémentation

Gérard Berry

Georges Gonthier

Ecole Nationale Supérieure des Mines de Paris Place Sophie Lafitte
(ENSMP) Sophia-Antipolis

Centre de Mathématiques Appliquées 06565 Valbonne - France
Institut National de Recherche Route des Lucioles

en Informatique et Automatique Sophia-Antipolis

(INRIA) 06565 Valbonne — France

The Esterel Synchronous Programming Language:
Design, Semantics, Implementation

Géfard Berry, Georges Gonthier
Ecole des Mines and INRIA, Sophia-Antipolis, 06565 VALBONNE, FRANCE

Résumsé :

Nous présentons le langage ESTEREL, qui est spécifiquement adapté a la programmation des
systémes réactifs, c’est & dire des systémes dont le réle est de maintenir une interaction constante
avec leur environnement: contréleurs de processus en temps-réel, protocoles de communications,
interfaces homme-machine etc. ESTEREL est un langage de programmation paralléle déterministe,
qui differe des langages classiques par son hypothéses de synchronisme: les sorties du systeme
réactif sont supposées conceptuellement synchrones avec ses entrées. Cette hypothése permet une
programmation plus modulaire et plus simple que les techniques asynchrones classiques. Nous
présentons les primitives impératives du langage et les manipulations temporelles qu’elles per-
mettent. Nous donnons un exemple de programme typique. Nous présentons deux sémantiques
mathématiques du langage: une sémantique comportementale qui définit de fagon non effective le
comportement d’un programme, et une sémantique d’exécution qui permet de calculer effectivement
ces comportements et de résoudre les problémes de causalité inhérents aux systémes synchrones.
Ces deux sémantiques sont données par des régles de réécriture conditionnelles. Elles sont reliées
par un théoréme de correction. Nous montrons comment les compilateurs ESTEREL V2 et Es-
TEREL V3 traduisent les programmes paralleles ESTEREL en automates séquentiels équivalents et
trés efficaces. Nous discutons la qualité du code produit et la validité pratique de I’hypothese de
synchronisme.

mots-clef: parallélisme, temps-réel, automates, compilation, langages synchrones.

Abstract :

We present the ESTEREL programming language which is especially designed to program reac-
tive systems, that is systems which maintain a permanent interaction with their environment: real-
time process controllers, communication protocols, man-machine interface drivers, etc. ESTEREL is
a deterministic concurrent programming language. It differs from classical asynchronous languages
by its synchrony hypothesis: the outputs of a system are conceptually synchronous with its inputs.
The synchrony hypothesis permits a high-level modular programming style simpler and more rig-
orous than its asynchronous counterpart. We present the imperative primitives of ESTEREL and
the temporal manipulations they permit. We give a small programming example. We present two
mathematical semantics of ESTEREL, which are given by conditional rewrite rules and related by
a correctness theorem. The behavioral semantics defines the behavior of programs in an uneffec-
tive way as solution of fixpoint equations. The effective execution semantics computes actions to
be performed by a conceptually infinitely fast execution machine. To relate the two semantics,
we solve the causality problems that are inherent in synchronous formalisms. We show how the
ESTEREL V2 and ESTEREL V3 compilers efficiently translate concurrent ESTEREL programs into
efficient equivalent sequential automata that can be implemented in conventional sequential lan-
guages. We discuss the quality of this object code and the practical adequacy of the synchrony
hypothesis.

Keywords : concurrent programming, synchronous languages, real-time, automata.

N D PAPIER RECUPERE ET RECYCLE

The Esterel Synchronous Programming Language:
Design, Semantics, Implementation

Gérard Berry, Georges Gonthier

Ecole Nationale Supérieure des Mines de Paris Place Sophie Laffitte

(ENSMP) Sophia-Antipolis

Centre de Mathématiques Appliquées 06565 Valbonne — France
Institut National de Recherche | Route des Lucioles

en Informatique et Automatique ‘ Sophia-Antipolis
(INRIA) 06565 Valbonne — France

Research funded by the French Coordinated Research Program C3

1. Introduction

The ESTEREL programming language we present here is the oldest and presently most de-
veloped member of a novel family of synchronous languages, which also includes the LUSTRE [19]
and SIGNAL [25] languages and the Statecharts formalism [26]. These languages are specifically
designed to program reactive systems, a variety of computerized systems that includes real-time
systems and all kinds of control automata. The mathematical semantics of ESTEREL was developed
together with the language; the implementation of ESTEREL is simply a physical realization of its
semantics. The paper presents the language concepts and constructs, the mathematical seman-
tics, and the ESTEREL implementations that are now under distribution. See [8, 9] for complete
reference manuals and [6, 7] for a short introduction to the ESTEREL programming style.

1.1. Reactive systems and programs

Many computer applications involve programs that maintain a permanent interaction with
their environment, reacting to inputs coming from this environment by sending outputs to it. We
follow Harel and Pnueli [27] and call these reactive programs; we call a system whose main compo-
nent is a reactive program a reactive system. Real time process controllers, signal processing units,
digital watches, video games are typical examples of reactive systems. Operating system drivers,
mouse/keyboard interface drivers (e.g., menubar or scrollbar drivers), communication protocol
emitters and receivers are examples of reactive programs embedded in complex systems. Notice
the input-driven character of reactive prograrms.

It is often convenient to consider reactive programs as composed of three layers:

e An interface with the environment that is in charge of input reception and output production.
It handles interrupts, reads sensors, activates effectors; it transforms external physical events
into internal logical ones and conversely.

e A reactive kernel that contains the logic of the system. It handles the logical inputs and
outputs. It decides what computations and what outputs must be generated in reacting to
inputs.

e A data handling layer that performs classical computations requested by the reactive kernel.

1

" In the rest of this paper, we shall mostly be concerned by reactive kernels that constitute the central
and most difficult part of reactive systems. In fact, ESTEREL is not a full-fledged programming
language, but rather a program generator used to program reactive kernels in the same way as
YACC [32] is used to program parsers from grammars. The interface and data handling must be
specified in some host language.

1.2. Deterministic reactive programs

Determinism is an important characteristic of reactive programs. A deterministic reactive
program produces identical output sequences when fed with identical input sequences. All examples
above are deterministic if physical time is considered as an input among others. The importance
of determinism cannot be overestimated: deterministic systems are one order of magnitude simpler
to specify, debug, and analyze than non-deterministic ones.

Purely sequential systems are obviously deterministic. But determinism does not mean sequen-
tiality. Most reactive systems can indeed be decomposed into concurrent deterministic subsystems
that cooperate in a deterministic way. For example, a typical digital wristwatch contains a time-
keeper, a stopwatch, and an alarm, all of which naturally cooperate deterministically. Deterministic
concurrency is the key to the modular development of reactive programs and, as we shall see, is
only supported by synchronous languages such as ESTEREL.

Some complex reactive systems can involve several subsystems running concurrently on differ-
ent processors and communicating with each other via asynchronous links (e.g., a distributed robot
arm controller). Such systems are no longer globally deterministic. However, we think that it is
always wise to isolate their deterministic reactive subsystems and to use our specific techniques for
them. Thus we extend Hoare’s Communicating Sequential Processes approach into a more general
Asynchronously Communicating Deterministic Reactive Systems approach.

1.3. The current tools in reactive programming

Before presenting ESTEREL, we briefly review the tools that are currently in use for reactive
programming:

 Deterministic automata (also called finite state machines) are often used to program relatively
small reactive kernels, typically in protocols or controllers. The interface part is realized using
operating system fa.c111t1es Data handling is done by calling routines written in conventional
languages. Automata obviously yield excellent and measurable run-time efficiency. They are
also mathematically well-known. Non-trivial correctness proofs can be performed by automatic
temporal-logic formula checkers such as EMC [21], MEC [2], XESAR [39], or by automata
observation systems such as AUTO [43, 42]). However, the human design and maintenance
of automata turns out to be very difficult and error-prone. Non-trivial automata are difficult
to draw and anOSSiblc to understand when not drawn. Small Cua,ust:a in apGCiﬁC&uuua Caii
involve deep changes in automata. Run-time actions must be duplicated on many transitions,
thus increasing the chance of misplacing an action. Above all, automata are purely sequential
and do not support concurrency: combining concurrent automata into a single automaton is
never an easy task.

e Petri-Net inspired tools such as the GRAFCET [11] are widely used in programmable con-
trollers. They run on specific machines that do not easily communicate with each other and
with conventional computers. Although they include crude concurrency primitives, they do
not support proper hierarchical development. Interface and data handling facilities only sup-
port simple data types such as boolean, integers, or reals. The programmmg and debugging
tools are poor.

o Sequential tasks running under a “real-time” operating system are widely used. They provide
some kind of concurrency by splitting a complex system into simpler communicating tasks,
which can themselves be automata. Inter-task communication is often done by sharing memory,
which is known to be error-prone. It can also use system communication primitives, which
are generally low-level and differ from one system to another, yielding ad-hoc and highly non-
portable programs. The internal program behavior is non-deterministic, unlike the applications
one wants to treat. Task handling incurs run-time overhead. Execution times are hard to
control. There are almost no generic simulation and debugging tools.

e Concurrent programming languages such as ADA [1] or OccaM [31] are more elaborate. They
naturally permit hierarchical and modular program development. Their tasking mechanism
and communication primitives are defined at the language level and are portable. They often
provide their user with interface and data manipulation facilities, allowing him to program in
a single language all the three layers defined in section 1.1. Debugging environments exist or
will exist. However, all classical concurrent languages are non-deterministic. The semantics of
their time-handling primitives is somewhat vague. The execution overhead can be important,
and execution times are unpredictable.

Quite amazingly, all the available techniques force the user to choose between determinism and
concurrency, for they base concurrency on asynchronous implementation models where processes
non-deterministically compete for computing resources. This leads to problems that are really
unnatural when programming reactive systems and when reasoning about such programs:

o Reactions can compete with each other. New inputs can arrive before the end of a reaction;
actions and communications in charge of performing the current reaction then compete with
actions and communications in charge of starting the new reaction. Since there is no rule telling
if and when a signal sent to another process will reach its destination, there is no systematic
way of telling when a reaction is complete. The only practical solution is to guarantee the
atomicity of each reaction. Generally this not supported by the systems and languages and it
is never easy to do by hand.

e Temporal primitives such as watchdogs (e.g., “do a task in less than 3 seconds”) have only
tentative meanings, for nothing forces them to be accurately executed. Since they usually
play a crucial role in real-time process control, one generally adds priority systems to improve
the user confidence in time manipulations. Such additions burden programs and cannot be
completely rigorous either.

e Each subprocess has its own perception of the whole system. One is even guaranteed that two
distinct subprocesses perceive differently their environment. For instance, a single sensor read
by two concurrent processes within a single reaction will probably return two different values,
since the read operations are done at different times.

1.4. The synchrony hypothesis

All the above problems disappear when one adopts the synchrony hypothesis: each reaction
is assumed to be instantaneous — and therefore atomic in any possible sense. Synchrony amounts
to saying that the underlying execution machine takes no time to execute the operations involved
in instruction sequencing, process handling, inter-process communication, and basic data handling
(e.g., additions). To “take no time” has to be understood in a very strong sense. First, a reaction
takes no time with respect to the external environment, which remains invariant during it. Second,
each subprocess also takes no time with respect to any other subprocess; subprocesses react in-
stantly to each other. In synchronous languages, inter-process communication is done by instantly
broadcasting events; all processes therefore share the same vision of their environment and of each

3

other. Statements take time if and only if they say so; temporal statements mean exactly what
they say. For instance, the statement “await 30 MILLISECOND” lasts exactly 30 milliseconds, and
the statement

every 1000 MILLISECOND do emit SECOND end

means that a SECOND signal is sent exactly every thousandth MILLISECOND; in an asynchronous
formalism, a SECOND would never be synchronous with a MILLISECOND.

Moreover, the “time” taken by a statement does not need to be measured in some predefined
“universal time unit”. One can as well write exact statements such as

every 1000 MILLIMETER do emit METER end

Synchrony is certainly natural from the user’s point of view: the user of a watch does not worry
about the internal reaction times, as long as he perceives that his watch reacts instantly to his
commands. Synchrony is also natural from the programmer’s point of view: it allows to rec-
oncile concurrency and determinism, to write simpler and more rigorous programs, to reason
about them (synchronous systems compose very well), and to dissociate the logic of a system
from implementation-dependent features such as reaction times.

Of course, one should wonder how realistic the hypothesis can be from an implementor’s point
a view. It turns out that synchronous programs can be efficiently compiled into highly efficient
automata, yielding excellent run-time efficiency and predictability. Performance is as good as that
of carefully hand-written code. The obtained automata can be automatically implemented in any
classical programming language, achieving object code portability. They can also be used as input
for automata verification systems. We stress that ESTEREL is a programming language yielding
small and efficient object code, not simply an idealized specification language that forces its user
to rewrite a program after the specification is finished.

Notice that synchrony hypotheses are very classical in physics: instantaneous body interaction
is the basis of Newtonian Mechanics, instantaneous propagation of electricity is the basis of Kir-
choff’s laws. Within their (broad) application range, they make reasoning about the world simpler
than more exact non-deterministic models such as Quantum Mechanics*. VLSI circuits rely on a
similar but weaker synchrony hypothesis: all reactions take one clock cycle, no matter how complex
they are inside; the SML reactive language [15] is based on the same hypothesis. This kind of half-
way synchrony accurately reflects how circuits work. To our belief, it lacks good compositionality
properties and cannot be used as the basis of a general reactive programming language.

1.5. The ESTEREL imperative programming language

As we mentioned in the beginning, several languages or formalisms have fully adopted the
synchrony hypothesis. They have roughly the same power, but they differ by their programming
style. LUSTRE [19] and SIGNAL [25] are declarative data-flow languages very much in Kahn —
Mac Queen style [33]. The Statecharts [26] are based on a hierarchical presentation of automata
using graphical structures named higraphs that support concurrency and communication. ESTEREL

adopts a more classical imperative style.

The ESTEREL statements handle either classical assignable variables that are local to concur-
rent statements and cannot be shared, or signals that are used to communicate with the environment
and between concurrent processes. A signal carries a status, which is its presence or absence in a
given reaction, and can carry a value of arbitrary type. The sharing law of signals is instantaneous

* No one would compute billiard ball trajectories in Quantum-Mechanics!

4

broadcasting: within a reaction, all statements of a program see the same status and value for any
signal. The events to which statements react are composed of possibly simultaneous occurrences
of signals.

The ESTEREL statements fall into two classes:

e standard imperative statements like assignment, signal emission, sequencing, conditional, loop,
trap-exit (or exception-block definition), and explicit concurrency. These statements are sup-
posed to be executed on an infinitely fast machine (so that the null statement nothing does
nothing in no time!).

e temporal statements such as triggers (await event do ...), watchdogs (do ... watching event),
or temporal loops (Loop ... each event).

As we have seen above with milliseconds and millimeters, the temporal primitives can be applied to
any signal: each signal is thought of as defining an independent time scale. The style we promote
in ESTEREL consists of freely mixing independent time scales. This favors the use of preemptive
primitives such as watchdogs (that define for how long their body will be executed) and the nesting
of such primitives. A typical ESTEREL statement looks like

do
every STEP do
emit JUMP
end

watching 100 METER

which exactly means “jump every step during 100 meters”. Alone the every STEP statement would
last forever but it is killed after 100 METER by the enclosing watching statement that makes the
whole statement terminate. Only a small example of ESTEREL programming will be given here, in
section 5. More elaborate examples can be found in [9].

The ESTEREL modules and module interface declarations are presented in section 2. We
present the ESTEREL statements in two steps. First, we present a set of basic ESTEREL statements
in section 3, together with their intuitive semantics based on the notion of instruction duration.
Then we present a richer, user-friendly set of plain ESTEREL statements in section 4. We show
how to accurately expand plain ESTEREL statements into basic ESTEREL.

1.6. The mathematical semantics of ESTEREL

The intuitive semantics of section 3 can be turned into a formal denotational semantics that
globally defines the output sequence of a program as a function of a timed input sequence. The
denotational semantics is presented in [24]; it is not detailed here since it is useless for compiling
algorithms.

We present in detail two mathematical semantics, given by Plotkin style rewrite rules [38]: the
behavioral semantics and the computational semantics. Given an input I to a program P, both
determine the output O and a new program P’ suited to treat the remaining inputs. The global
temporal treatment of statements is therefore replaced by a local computation of each reaction.
The behavior of a program on any input sequence can be computed in a step by step fashion.

The behavioral semantics is given in section 5. It defines globally each reaction. As in Kirshoff’s
electrical laws, the values O and P’ are solutions of fixpoint equations that express the sharing law
and determine the instantaneous information exchanges between concurrent statements. Since
we want the language to be deterministic, we must require solutions to exist and to be unique.
However, the equations involve non-monotonic operators (e.g., negative tests for signal presence).

5

There is no immediate way of solving them and even of knowing whether unique solutions exist or
not.

We exhibit in section 6 several kinds of paradoxical programs, that have very close electronic
analogues. For example, we show a program that should mean “emit a signal S if and only if
this signal is not present”; the electronic analogue is a not gate whose output is plugged into its
input. We also show a program that should mean “the current integer value S of a signal S satisfies
S = S + 17; the electronic analogue is a positive feedback obtained by plugging the output of an
amplifier into its input. For these nonsense programs, the equations have no solution. We also
exhibit programs for which the semantic equations have several solutions.

In section 7, we present the computational semantics of programs. Instead of defining behaviors
in a global way, we compute them as results of sequences of actions of an execution machine.
Signals are implemented using shared memory, with the following read/write discipline to enforce
the sharing law: a signal cannot be read unmtil it can no longer be written (apparently simpler
disciplines fail to reject all incorrect programs). A calculus of potentials allows us to compute action
sequences that satisfy this new law or to detect if such sequences do not exist. We state our main
theorem: when correct action sequences do exist, they all terminate and yield the same results
(in technical terms, the computational semantics has Church-Rosser and strong normalization
properties [3]); furthermore, the results are exactly those defined by the behavioral semantics. This
theorem establishes the deterministic character of correct reactions.

1.7. From ESTEREL programs to automata

The computational semantics of programs can be rather efficiently implemented; it can there-
fore serve as basis for an ESTEREL interpreter. However, this interpreter would not be fast enough
for actual real-time applications. ‘Our next step is to compile ESTEREL programs into sequential
automata. This is the purpose of section 7. We use a variant of Brzozowski’s derivative algorithm
[17, 10], which was originally designed to transform regular expressions into automata. The idea
is to formally iterate the computational semantic calculations, building a graph whose nodes are
ESTEREL terms and whose arcs bear the action sequences. Starting from a node bearing the initial
program, we compute all possible reactions iteratively. Each time a new reaction is computed, the
target ESTEREL term is compared to the previously computed terms. This process is easily shown
to terminate.

Compiling is made very fast in the ESTEREL V3 system, which does not use the original
ESTEREL language but a kernel reactive language described in [24]. For instance, the digital
wristwatch described in [8] compiles in about 5 seconds on a SUN3, yielding a 41 state automaton
involving 2494 actions. This automaton can be easily translated into C, LISP, ADA, or more
generally into any suitable host language. In final machine code, it would occupy about 3K bytes
of memory and have very fast and predictable reaction times, comparable to those of hand-coded
automata. To perform behavior analysis and proofs, the automaton can also be used as input to
the above-mentioned automata verification systems EMC, AUTO, MEC, or XESAR.

By itself, the translation to automata justifies the synchrony hypothesis. If not instantaneous,
run-time reactions are as fast as they can be. Microstep sequences only contain actions that must
be done at run-time. Process handling and synchronization are done at compile time, therefore

produce no actions. This is clearly the best way to be infinitely fast.

As far as code size is concerned, the produced automata turn out to be minimal in most cases
(we do not know exactly why). Unlike in asynchronous formalisms, automata explosion is not the
rule. For programs that yield unreasonably big automata, the ESTEREL V3 system gives a way to

6

replace the normal single automaton by a cascade of small automata that behave equivalently. See
[9] for details.

2. The EsTEREL module structure and the global declarations

In both basic and plain ESTEREL , the programming unit is the module. A module has a name,
a declaration part, a body, and ends with a period*:
module MOD :

declaration part
body

The declaration part declares the external objects used by the module: data objects to be imple-
mented in the data handling layer, signals and sensors that define the reactive interface. Their
declarations are inter-dependent since signals and sensors can carry values of types declared in the
data declarations. All objects must be declared before they are used. The declarations are similar
in basic and plain ESTEREL ; some restrictions apply to interface signals in basic ESTEREL.

The body is an executable statement, written either in a restricted instruction set in basic
ESTEREL or in a user-friendly instruction set in plain ESTEREL. The instruction sets will be
detailed in sections 3 and 4.

2.1. Data declarations

Data declarations declare the types, constants, functions, and procedures that manipulate
data. ESTEREL has a few primitive types described below, but no compound type constructors
such as record or array. Complex data handling is done at an abstract level: data have abstract
types and are manipulated by abstract functions and procedures only known by their names, to
be implemented in a host language. See [8] for connecting ESTEREL declarations with actual
definitions in host languages.

2.1.1. Type declarations

Basic ESTEREL has three primitive types: integer, boolean (with constants true and false),
and triv (with a unique constant also called triv). These types are necessary to translate plain
ESTEREL into basic ESTEREL (triv is used to turn plain ESTEREL pure signals into basic ESTEREL
valued signals of type triv, see below). For user’s convenience, plain ESTEREL defines some other
basic types such as string and float, with the classical syntax of string and float literals.

The user can declare his own abstract types by listing them after the type keyword:
type DOUBLE, TIME;

2.1.2. Constant declarations

One can declare constants of predefined or abstract types:
constant MEASURE_NUMBER: integer, PI : DOUBLE, NOON : TIME;

Of course the types must have already been declared. The values are given in the host language,
not in ESTEREL.

2.1.3. Function declarations

Functions are declared as usual:

* The lexical aspects of ESTEREL are classical; the keywords are in lower case and reserved; we
write identifiers in upper-case but this is not compulsory.

7

function SQRT (DOUBLE) : DOUBLE,
EQUAL_TIME (TIME, TIME) : boolean;

Functions are assumed to be free of side effects. Their implementation is written in the host
language.

2.1.4. Procedure declarations

Procedures have two argument lists: in a procedure call, the first list contains variables passed
by reference and subject to side-effects (like var parameters in PASCAL or inout parameters in
ADA); the second list contains expressions passed by value (like val parameters in PASCAL or in
parameters in ADA). In the declaration, only the argument types are declared. For example, to
‘add-in-place a number of seconds to a time, one can declare:

procedure INCREMENT_TIME_BY_SECONDS (TIME) (integer);

2.2. Interface declarations

One must declare the signals and sensors that constitute the module’s reactive interface (a
sensor is a degenerate kind of signal available in plain ESTEREL). One can also declare input
relations that restrict possible input events and are important for compiling programs.

Signals have instantaneous ticks (i.e. interrupts) that serves as control information for the
temporal statements described in section 3 and 4. Clock pulses, button depressions, or message
arrivals are typical examples of ticks. A signal S can also have a persistent value of some type, that
can be accessed at any time in ESTEREL programs by the expression “?S”. For example, the value
of a message signal can be the contents of the message.

The following relation between ticks and values is assumed to hold for input signals: the value
of a signal can change only when a tick occurs; in this case the new value instantly replaces the
old value, which is lost. In our message example, the message value can only change when a new
message is received. Hence, a program driven by the message ticks is guaranteed to correctly treat
all messages. This fundamental relation between ticks and values will automatically hold for output

- 1) BT I g . Y 4 - .
and local signals, see the sharing law in the next section.

In plain ESTEREL, there is a special sensor declaration for passive external devices such as
thermometers, which yield values on demand but do not generate ticks. Only the value access
operation “?” is available for sensors.

2.2.1. Basic ESTEREL interface declarations

In basic ESTEREL, there are only two kinds of interface signals: input signals and output
gnals. Input signals come from the environment; they cannot be emitted internally in basic
- .

ty
[¢]
5

input S (type);

Conversely, output signals are emitted towards the environment of the module by the “emit”
statement: “emit S(exp)” emits a signal S with the value of the expression ezp. Since control
transmission is instantaneous in ESTEREL, several emitters can emit the same signal at the same
time with different values, as in

emit S(1) || emit S(2)

“II” M

where is the ESTEREL parallel operator. We call this phenomenon a collision. When collisions
occur, we have to define the actual value 7S of the signal. Following Milner [36], we associate an

8

associative commutative combination function comb with each signal S. If the emitters emits the
values vy, vz, ...,%n, the actual value of S is

comb(vy,comb(va, ...comb(va_1,%s)...))
An output signal declaration has the form:

output S (combine type with comb);

where type and comb must already have been declared, with comb declared as

function comb(type,type) :type;
Here are some useful combination functions:

1. In Ethernet-like local networks, signal broadcasting is physically realized on a cable. A special
value NAK represents the collision of any two messages. One sets comb(v;,vz) = NAK for all vy
and vs,.

2. In a request handling mechanism, several processes can request the same resource simultane-
ously, say by broadcasting their name. A natural choice is to take as result the set of these
names. The appropriate combination operation is set union.

3. In the digital watch programmed in [9], the timekeeper, stopwatch, and alarm can operate a
beeper. The timekeeper beeps once a second, the stopwatch beeps twice a second, and the
alarm beeps four times a second. If some of these units beep together, the resulting number

~ of beeps per second is obtained by adding the individual numbers. Hence seven beeps per
second occur when the three units beep together. We simply define a BEEP signal that carries
an integer representing the required number of beeps and choose integer addition as the comb
function.

2.2.2. Plain ESTEREL interface declarations
In practice, one often uses pure control signals whose values are meaningless, such as SECOND,

METER etc. In basic ESTEREL one has to declare such signals of type triv. In plain ESTEREL, one
can simply omit the type declaration, writing

input SECOND, METER;
output ALARM;

Also, one may know that collisions will never take place for a given signal (this indeed tends to be
the default case). The combination function can then be omitted:

output SPEED (float);
The ESTEREL compiler then checks that collisions can never appear.

Basic ESTEREL establishes a sharp distinction between input and output signals. This restric-
tion is relaxed in plain ESTEREL, which allows for signals that can be both input and output. A
natural example is:

inputoutput BUS_REQUEST;

The semantics of inputoutput signals is a bit delicate and will not be detailed here. See [8] for
details.

Finally, sensors are declared in the following way:

sensor TEMPERATURE (FAHRENHEIT);

The compiler will check that temporal instructions such as delays are not applied to sensors (re-
member that only the “?” operator applies to them).

2.2.3. Relation declarations

Relation declarations restrict the possible input events of a module. There are two kind of
relations:

1. incompatibility relations of the form S;#S>#8S3; such a relation states that the signals S,, Sz,
and S3 are mutually exclusive in input events.

2. synchrony relations of the form S;=>S,;; this relation tells that S, will be present in an input
event whenever Sy is.

Here is an example of relation declarations:

relation LEFT_BUTTON # RIGHT_BUTTON,
SECOND => HUNDREDTH_OF _SECOND;

There are two reasons to use input relations. First, the specification may require signals not to
appear together: for a watch, it makes no sense to go simultaneously in stopwatch and alarm mode.
Second, relations are essential to reduce the size of the generated automaton. See section 9.3 for
details.

3. The basic ESTEREL instruction set and its naive semantics

We describe the expressions and statements used in basic ESTEREL, together with their in-
tuitive semantics. The basic statements form the heart of ESTEREL. They are independent of
each other. We use the meta-variables type, exp, and stat to range over types, expressions, and
statements; we also use self-explanatory meta-variables in italic when necessary.

ESTEREL expressions and statements manipulate variables and signals, which can be declared
locally at any point. The variables and signals strongly differ in that only signals can be shared.
Within statements, there is no difference between input, output, or local signals.

3.1. Expressions

Expressions are used in a classical way to denote values. They are built up from constants,
variables, and signal values, by operators and function calls. They are strongly typed in a classical
way (see [8] for precise type-checking laws).

The constants are the natural numbers such as 123, the boolean constants true and false,
and the user-defined constants declared in the module’s constant declaration part. The variables
are classical identifiers (see variable declarations below). If S is a signal of type type, then 7S is an
expression of type type that denotes the current value of the signal S at the time the expression is
evaluated, see below.

The operators are the usual integer and boolean operators (+, *, <=, etc). The function calls
are standard (the function must be declared in the module’s declaration part).

3.2. Basic statements

Here is the list of the basic statements:

nothing dummy statement
halt : halting statement
X :=exp assignment statement

10

call P (variable—list) (ezpression—list) external procedure call

emit S(ezp) signal emission

staty ; staty sequence

loop stat end ' infinite loop

if exp then stat; else stat, end conditional

present S then stat; else stat; end test for signal presence
do stat watching S watchdog

staty |1 stats ' parallel statement
trap T in stat end ' trap definition

exit T exit from trap

var X : type in stat end local variable declaration
signal S (combine type with comb) in stat end local signal declaration

The emit, present, and watching statements are specific to ESTEREL; they deal uniformly with
input signals, output signals, or local signals declared by local signal declarations. An exit state-
ment exits a control block defined by a trap statement. This kind of construct is well-known in
LISP as the catch-throw or tag-exit construct, in ML as the failure construct, or in ADA as the
exception construct. In our case, the interaction between exit and parallel statement has to be
carefully defined; we shall give a first-class semantic status to trap—exit statements, instead of
explaining them loosely as control-flow diverters. All other statements are common in imperative
languages. Notice that the parallel statement can be used at any level; there is no static notion of
process as in CSP [29)].

In compound statements, the sequencing operator “;” has priority over the parallel operator
“| |”. When necessary, statements can be grouped by bracketing them with square brackets, as in
“[stat, || staty] ;stats”.

All variables, signals, or trap labels must be declared before they are used. Their declarations
have static scope. Input, inputoutput, and output signals have global scope.

Variables cannot be shared: if a variable is updated in one branch of a parallel statement,
it cannot be read or updated in the other branch (a variable is updated by an assignment or a
procedure call where it appears in the first argument list).

The following additional restrictions apply to basic ESTEREL programs:
e Input signals cannot be internally emitted.
e The present S statement and the value access ?S are not allowed for output signals.

These restrictions simplify the mathematical semantics. They are suppressed in plain ESTEREL
(however, the compiler produces warnings when they are not satisfied).

3.3. The intuitive semantics

The intuitive semantics describes the behavior of a module on a given input history. Let us call
input event the occurrence of one or possibly several simultaneous input signals coming from the
environment. The module reacts to each input event by updating local variables and emitting local
and output signals. The emitted output signals make up the output event sent to the module’s
environment. This whole process is called the reaction to an input event. The reaction is assumed
to be instantaneous: the output event is synchronous with the input event. A sequence of input

11

events is called an input history; the events define the instants of the history. Reactions only occur
on input events; the underlying execution machine is inactive between input events.

The signals that constitute the events all obey the following sharing law:

e A signal has a fixed status in each reaction: it is either present or absent. To be present, a
signal must either be present in the input event if it is an input signal or be emitted by the
program if it is a local or output signal.

e A signal has a unique current value 7S in each reaction. If a signal is present in a reaction, its
value is its current input value if the signal is input or is the combination of all the emitted
values if the signal is output or local. If a signal is absent, its current. value is the same as
in the previous reaction. Before its first emission, the value of a local or output signal is the
undefined value L.

(Intuitively, the sharing law should imply program determinism; as we shall see in section 7, this
is only true for “correct programs”.)

Since variables are not shared between statements, they can be updated several times within
a single reaction. Their initial value is also L.

The key idea of the intuitive semantics is to describe formally not only the actions performed
by each statement (memory updates, signal emissions, or tests), but also their timing, that is, at
which “instant” they are performed. Signal current values and in general all subprocess interaction
will be defined solely in terms of timing.

To describe this timing in a structural way, the semantics relies on four notions. First, the
context of each statement in a program determines the instant this statement starts executing;
second, the internal execution of this statement determines when it terminates, if it ever does.
When a statement terminates on the same instant it starts, we say it terminates instantly, or that
it is instantaneous. Almost everything in ESTEREL is instantaneous: expression computations,
memory updates, communication, and control transmission. Third, since ESTEREL has block
exits, the execution of a statement can also determine when it exits a trap; a statement that exits
a trap does not terminate in the above sense (however, it is inactive from there on). A statement
that does not terminate nor exit a trap instantly is said to take time. Finally, a statement can be
aborted or killed by some other part of the program, at some instant; it.is then prevented from
performing any actions (or terminating, or exiting) from then on.

The semantics is structural and describes the relations between these notions for statements
and their substatements:

e The module body starts upon reception of the first input event. It never terminates (it is
therefore implicitly followed in sequence by a halt statement).

AAL e oL O At PO | P SR P SRS
nothing periorms no action and terminates instantly.

e halt performs no action and never terminates nor exit traps.
e An assignment updates the memory and terminates instantly.

e .A procedure call updates the memory and terminates instantly. (Long computations to be
performed while the program is running should not be realized by procedure calls. They should

+1h

JRPRE [SRR | a
LT

| L 7yseps I ORI, N1 I S S | P . Rt e . Sy
ve lcalised Ly SCIUJ.IL[B Lile (‘nguult'llbb' LU JSLLLE CXLEliiadl CULLIPDULILE UTVILCS allu walviitg 101
results, using signals for value communication. A specific time-consuming exec primitive will
be added to ESTEREL in subsequent versions.)

o When it starts, an emit statement evaluates its expressions to a value, emits its signal with
this value, and terminates.

12

